Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Landscape properties have a profound influence on the diversity and distribution of biota, with present-day biodiversity hot spots occurring in topographically complex regions globally. Complex topography is created by tectonic processes and further shaped by interactions between climate and land-surface processes. These processes enrich diversity at the regional scale by promoting speciation and accommodating increased species richness along strong environmental gradients. Synthesis of the mammalian fossil record and a geophysical model of topographic evolution of the Basin and Range Province in western North America enable us to directly quantify relationships between mammal diversity and landscape dynamics over the past 30 million years. We analyze the covariation between tectonic history (extensional strain rates, paleotopography, and ruggedness), global temperature, and diversity dynamics. Mammal species richness and turnover exhibit stronger responses to rates of change in landscape properties than to the specific properties themselves, with peaks in diversity coinciding with high tectonic strain rates and large changes in elevation across spatial scales.more » « less
-
Tectonic processes drive the evolution of basins through local and regional changes in topographic relief, which have long-term effects on mammalian richness and distribution. Mammals respond to the resulting changes in landscape and climate through evolution, shifts in geographic range, and by altering their community composition. Here, we evaluate the relationship between tectonic episodes and the diversification history of fossil mammals in the Miocene Dove Spring Formation (12.5−8.5 Ma) of southern California, USA. This formation contains a rich fossil record of mammals and other vertebrates as well as structural and sedimentological evidence for tectonic episodes of basin extension, rotation, and translation. We used several methods to compare the fossil record to the tectonic history of the Dove Spring Formation. We updated the formation’s geochronology to incorporate current radiometric dating standards and measured additional stratigraphic sections to refine the temporal resolution of large mammal (>1 kg) fossil localities to 200-kyr (or shorter) intervals. Observed species richness over time follows the same trend as the number of localities and specimens, suggesting that richness reflects sampling intensity. Estimates of stratigraphic ranges with 80% confidence intervals were used to conduct per capita diversification analysis and a likelihood approach to changes in faunal composition from one time interval to the next. While edge effects influence time bins at the beginning and end of the study interval, we found changes in diversification rates and faunal composition that are not solely linked to preservation. Several rare species appear at 10.5 Ma and persist through the top of the formation despite variable preservation rates. Changes in faunal composition at 12.1 Ma and 10.5 Ma are not associated with elevated preservation rates, which indicates that some faunal changes are not primarily driven by sampling effort. The lower portion of the formation is characterized by high origination rates and long residence times. The upper portion has high per capita extinction rates that increased in magnitude as basin rotation and translation progressed from 10.5 Ma. The greatest change in faunal composition coincided with basin rotation and translation that interrupted a long-running extensional period. Tectonics played key roles in the diversity of mammals by determining fossil productivity and shaping the landscapes that they inhabited.more » « less
-
Mammals rose to prominence in terrestrial ecosystems after the Cretaceous–Paleogene mass extinction, but the mammalian lineages characteristic of Paleogene faunas began their evolutionary and ecological diversification in the Late Cretaceous, stimulated by the rise of angiosperms (flowering plants) according to the preeminent hy- pothesis. The Cretaceous rise of mammals is part of a larger expansion in biodiversity on land that has been termed the Cretaceous (or Angiosperm) Terrestrial Revolution, but the mechanisms underlying its initiation remain opaque. Here, we review data from the fossil and rock records of western North America—due to its relatively continuous fossil record and complete chronology of mountain-building events—to explore the role that tectonism might have played in catalyzing the rise of modern-aspect terrestrial biodiversity, especially that of mammals and angiosperms. We highlight that accelerated increases in mammal and angiosperm species richness in the Late Cretaceous, ca. 100–75 Ma, track the acceleration of tectonic processes that formed the North American Cordillera and occurred during the ‘middle-Cretaceous greenhouse’ climate. This rapid increase in both mammal and angiosperm diversity also occurred during the zenith of Western Interior Seaway trans- gression, a period when the availability of lowland habitats was at its minimum, and oscillatory transgression- regression cycles would have frequently forced upland range shifts among lowland populations. These changes to both landscapes and climates have all been linked to an abrupt, global tectonic-plate ‘reorganization’ that occurred ca. 100 Ma. That mammals and angiosperms both increased in species richness during this interval does not appear to be a taphonomic artifact—some of the largest spikes in diversity occur when the available mammal-bearing fossil localities are sparse. Noting that mountainous regions are engines for generating biodi- versity, especially in warm climates, we propose that the Cretaceous/Angiosperm Terrestrial Revolution was ultimately catalyzed by accelerated tectonism and enhanced via cascading changes to landscapes and climate. In the fossil record of individual basins across western North America, we predict that (1) increases in mammalian diversity through the Late Cretaceous should be positively correlated with rates of tectonic uplift, which we infer to be a proxy for topographic relief, and are attended by increased climate heterogeneity, (2) the diversity of mountain-proximal mammalian assemblages should exceed that of coeval mountain-distal assemblages, espe- cially in the latest Cretaceous, and (3) endemism should increase from the latest Cretaceous to early Paleogene as Laramide mountain belts fragmented the Western Interior. Empirical tests of these predictions will require increased fossil collecting in under-sampled regions and time intervals, description and systematic study of existing collections, and basin-scale integration of geological and paleontological data. Testing these predictions will further our understanding of the coevolutionary processes linking tectonics, climate, and life throughout Earth history.more » « less
-
Abstract C4 grassland ecosystems expanded across North America between ca. 8 and 3 Ma. Studies of ungulate enamel and environmental indicators from the middle Miocene Barstow Formation of southern California (USA) have demonstrated the presence of C4 vegetation prior to the late Miocene expansion of C4 grasslands. Fire promotes the growth of modern C4 grasslands and may have contributed to the Miocene expansion of C4 vegetation. We analyzed the concentration and accumulation rate (CHAR) of microscopic charred particles from sediment samples spanning the Barstow Formation in order to investigate the relationship between fire activity, canopy cover, and the presence of C4 vegetation. Concentration and CHAR were low throughout the formation then increased dramatically at 13.5 Ma. Enriched values of δ13C from soil organic matter and phytolith counts indicate the presence of C4 grasses and seasonally dry, open-canopy habitats at this time. The spike in concentration coincides with climatic cooling and drying in southern California after the Miocene Climatic Optimum. Increased fire activity may have contributed to habitat opening from forest to woodland and promoted the spread of C4 plants. This is the first charcoal record of fire activity from the middle Miocene of southwestern North America.more » « less
-
Tectonic activity can drive speciation and sedimentation, potentially causing the fossil and rock records to share common patterns through time. The Basin and Range of western North America arose through widespread extension and collapse of topographic highlands in the Miocene, creating numerous basins with rich mammalian fossil records. We analyzed patterns of mammalian species richness from 36 to 0 million years ago in relation to the history of sediment accumulation to test whether intervals of high species richness corresponded with elevated sediment accumulation and fossil burial in response to tectonic deformation. We found that the sedimentary record of the Basin and Range tracks the tectonic evolution of landscapes, whereas species-richness trends reflect actual increased richness in the Miocene rather than increased fossil burial. The sedimentary record of the region broadly determines the preservation of the fossil record but does not drive the Miocene peak in mammalian species richness.more » « less
-
Abstract The Cenozoic landscape evolution in southwestern North America is ascribed to crustal isostasy, dynamic topography, or lithosphere tectonics, but their relative contributions remain controversial. Here we reconstruct landscape history since the late Eocene by investigating the interplay between mantle convection, lithosphere dynamics, climate, and surface processes using fully coupled four-dimensional numerical models. Our quantified depth-dependent strain rate and stress history within the lithosphere, under the influence of gravitational collapse and sub-lithospheric mantle flow, show that high gravitational potential energy of a mountain chain relative to a lower Colorado Plateau can explain extension directions and stress magnitudes in the belt of metamorphic core complexes during topographic collapse. Profound lithospheric weakening through heating and partial melting, following slab rollback, promoted this extensional collapse. Landscape evolution guided northeast drainage onto the Colorado Plateau during the late Eocene-late Oligocene, south-southwest drainage reversal during the late Oligocene-middle Miocene, and southwest drainage following the late Miocene.more » « less
An official website of the United States government
